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ABSTRACT 

S t a r s  with a core mass greater than about 30 % become dynamically 

unstable due to  electron-positron pair  production when their central 

temperature reaches 1.5 - 2.0 X lo9 OK. 
explosion of stars w i t h  core masses of 45, 52, and 60 % is calculated. 

range of the final velocity of expansion (3,400 - 8,500 km/sec) and 

The collapse and subsequent 

of the mass ejected (1 - 40 %) i s  caanpsrable t o  that observed for 

type I1 aupernovae. 

included i n  the calculations. 

A d y n d c a l  m o d e l  of convection is derived and 

It was found that the effect  of the con- 
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I. INTRODUCTION 

In investigations of the origins of supernovae, the usual cause of 

s t e l l a r  collapse considered has been the decomposition of iron a t  temper- 

atures around 

carried out by Colgate and White (19661, and by Arnett (1967). Recently, 

R a k a v y  and Shaviv (1966) have found another cause of dynamic instabil i ty;  

stars of more than a b u t  30 %become unstable due t o  the formation of 

electron-positron pairs. 

mass of the pairs lowers the value of y (= (d log P/d log p),) 

at low densities (see Figure 1). 

tially at low temperatures; at  high temperatures, the energy absorbed i n  

creating the rest mass becomes less significant. The result  is that the 

boundary of the "unstable area" (where y i s  less than 4/3) reaches a 

maximUm density of about 

Nhen a sufficient Bmount of the s ta r  has entered this area, it becomes 

dynamically unstable and begins to  collapse. 

stars, since lower mass stars evolve along density-temperature l ines  that 

always keep them above the unstable area. 

5 - 6 X lo9 OK. Calculations of the collapse have been 

The absorption of energy t o  create the res t  

below 4/3 

The number of pairs decrease exponen- 

5 7 X 10 @/em3 at a temperature o f  2.8 X lo9 OK. 

T h i s  occurs only  for massive 

The collapse due t o  pair production is quite m i l d  compared t o  that 

due t o  i ron decomposition. 

cient  portion of the s t a r  w i l l  have passed out of the unstable mea on 

its high temperature boundary. 

pressure increases fas ter  than the gravitational forces) reverses the 

collapse. The temperatures reached netu the center i n  a typical case 

produce oxygen burning a t  an explosive rate. 

burned, the energy released will disrupt all or part of the star, and 

After a compression of l e s s  than 10, a suffi- 

The resultant stiffening (i.e., tbe 

Providing enough oxygen is 
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eject  the material w i t h  high velocities. 

burning is about equal to a kinetic energy of 10,OOO km/sec. 

should be something of an upper l i m i t  for the (average) velocity of 

expansion. 

The  energy released i n  oxygen 

T h i s  then 

More massive stars w i t h  higher entropies become unstable at luwer 

temperatures. 

and reach a higher temperature at the reversal of collapse. 

greater energy release from the oxygen burning, and so the explosion 

following the collapse is of greater intensity. 

stars (e.g., greater than 100 %), the collapse may proceed until. the 

center reaches a temperature at which the heavier elements (silicon, iron) 

begin t o  decompose. 

and the collapse may never be reversed. 

collapse and explosion of stars of masses (45, 52, and 60 %> intennediate 

between this possible upper l i m i t  and the lower l i m i t  of about 30 %. 

During the collapse they acquire a greater inward momentum, 

There is a 

For sufficiently massive 

In that case y remains l e s s  than 4/3 at the center, 

This paper investigates the 

Two principal problems are the numerical techniques used i n  cslcula- 

t ing the hydrodynaznics, and the effects of convective instabil i ty.  The 

u s 4  method of dealing w i t h  the hydrodynamics is the explicit  one which 

i a  stable only i f  the t b e  step is less than the Courant l i m i t  (the tlme 

it takes sound t o  cross a mas8 zone). For comparatively slow evolution, 

conditions change only &slightly during a t i m e  step so restricted; it is 

then preferable t o  take larger steps. 

hydrodynamics scheme which i s  used here. 

including the force, are averaged over the time step i s  allowed t o  vary. 

One of tbe special cases reduces essentially t o  hydrostatic equilibrium; 

this is used when appropriate (see Appendix). 

This may be done by an implicit 

The wa;y i n  which quantities, 
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For evolution on a dynanical time scale, convective instabi l i ty  does 

not produce the zero entropy gradient and perfect mixing which is found 

for slower evolution. 

rough fashion the results of the instabil i ty,  and which is easily incor- 

porated into the scheme of t h e  numerical calculation (see Appendix), is  

derived f’ramthe equations of motion. 

then also have the equations f o r t h e  time derivatives of the kinetic energy 

of the convective turbulence, and of the convective energy flux. 

method, while giving the interaction of the turbulence w i t h  the material, 

does not, of course, give the self-interaction of  the turbulence, which is 

responsible, for example, for the decay of the turbulent energy. This must 

be e s t h a t e d  by other means. 

A simple model of the convection, which gives i n  a 

Besides the equations of motion, we 

T h i s  

11. CONVECTION 

a )  Introduction 

The general method used here for the derivation of the convective 

model is that used by C o w l i n g  (1936). 

mean velocity V and the convective velocity W. 

that it does not, on the average, effect  any net mass transport or possess 

momsntum. 

over a spherical ~ b e i i . )  

The velocity U i s  divided into the 

The l a t t e r  i s  defined so 

(For spherical symmtry, the averaging is done by integrating 

where Vi remains constant over the area of averaging. The kinetic energy 

may be divided into the energy of the man motion and that of the convec- 

t i ve  turbulence, the latter being, in  a sense, a form of internal energy. 
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(A pair of tbe same indices indicates a summation.) 

The equations of motion are averaged i n  the same way. The equations 

for the conservation of mass, energy, and momentum are: 

(P 

the energy flux.) 

is t h e  viscosity stress tensor, Gi is  the external force, and Fi is 
iJ 

When averaged, the equations are 

, D a - * + v i v i  Dt where 

i.e., a derivative which follaws the mean motion of the material. 

averaged momentum equation differs f’rom the original by the presence of 

the Reynolds stresses. 

The 

The basic difference i n  tb energy equation is  
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the convective energy flux, (pE Wi)* 

side generally acts t o  reinforce the convective flux. 

viscosity on the mass motion has been neglected; the viscosity term i n  

the energy equation then represents heat formed by the decay of the 

turbulent kinetic energy. 

The second term on the right-hand 

The effect of 

For spherical symmetry, the derivative of the radial velocity is 

For simplicity, the distribution of the kinetic energy of the turbulence 

is  assumed t o  be isotropic, i.e.# 

and Equation (7 )  becomes 

Besides the usual equations of motion there axe required the equa- 

t ions for  the turbulent kinetic energy and the convective energy flux. 

Quation (3) i s  contracted wi th  Ui t o  give the rate of change of the 

total kinetic energy 

The derivative of the energy of the mean motion (gotten by contracting 
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Equation (6)  w i t h  Vi) is subtracted; t h i s  leaves that of the turbulent 

energy. 

b) Treatment of the Turbulent Enerw and Energy Flux 

It w i l l  be assumed that the density fluctuations over an area of 

averaging are small. 

averaged convective velocity. 

"hen the energy flux is proportional t o  the 

b 

Usually the pressure fluctuations (those correlated w i t h  the convective 

velocity) should be small compared t o  the density fluctuations. 

case, 

I n  that 

The first term on the right of Quation (10) is  the basic driving 

force. Under hydrostatic equilibrium i ts  value is - (P) g (W) . Since 
the term g( pW) 

showing that the turbulence i s  created by buoyancy forces. 

not the buoyancy effect  acts  t o  increase or decrease the turbulent energy 

depends on how the density fluctuations are correlated w i t h  the convec- 

t i ve  velocity, and this, of course, ultimately depends on w h e t h e r  or not 

may be added to  it, it is also equal t o  g( (b) W), 

Whether or 
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the are8 is convectively stable o r  not. 

energy flux (neglecting the pressure fluctuations ) . 
The effect is proportional t o  the 

The 

mated by 

have the 

second term, the viscous dissipation of the turbulence, is approxi- 

f is roughly the length of those eddies which 1 1 5  
(p) 'j (Wi Wi) /I; 

maximum energy (Batchelor 1953) . This should be reasonably valid 

providing the eddies have a large Reynolda number. 

not lose their energy directly into heat, but rather transfer it ultimately 

t o  small eddies, roughly in  equilibrium, w i t h  Reynolds number of order one, 

which pass the energy on into heat. The factor f is more or less the equi- 

valent of' a mixing length. Since the larger the eddy the slower it decays, 

1 should be about the size of' the (smallest) characteristic length of the 

system, as it is expected that the largest  eddies formed are of th i s  size. 

For convection in  s t e l l a r  atmospheres, the mixing length is often taken 

equal t o  a scale height. 

larger than the radius, which near the center is less than a scale height. 

The procedure adopted was t o  make f proportional t o  the minimum of the 

pressure scale height, the radius, and the length of the convective zone 

i t s e l f .  

w h a t  effect  this might have on the evolution of the system. 

These large eddies do 

However, the eddy size should not usually be 

The constant of proportionality could be changed t o  determine 

The third term is the diffusion of the convective energy. It tends 

t o  spread aut the turbulence evenly; it also introduces it t o  regions 

previously stable. 

l en t  zone. 

1 / f ,  since the energy should not change substantially i n  a smaller dis-  

tance. 

small compared t o  the dissipation. 

It disappears when integrated over the entire turbu- 

In estimating i t s  magnitude, the derivative can be replaced by 

Since t o  a first approximation it cancels out, it is generally 

For simplicity, it is neglected here. 
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It is  responsible for  spreading the turbulence beyond the convectively 

unstable area; however, here it w i l l  be assumed that the turbulence 

effectively stops at the edge of the convectively unstable zone (except 

for  decwing turbulence i n  a previously unstable region). 

is t o  transport energy. 

compared t o  the speed of sound, t h i s  is considerably smaller than the 

flux of internal energy (L - ( I o P I )  (IwI) (E)). 

For isotropic turbulence, the  last term is 

Another effect 

As long as the speed of convection is small 

For spherical symmetry, EQuation (10) is 

The derivative of the energy flux is 
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The approximate d u e s  for the terms on the right-hand side for the radial 

component of the flux are given below. Terms 1, 3, and 7 give 

. 
T h i s  reflects the fact that the Reynolds stresses tend t o  have a greater 

effect on the lighter, usually more energetic, elements. 

term 4, 

Similarly, 

? 

indicates the greater acceleration given the l ighter elements by the 

pressure gradient. 

Both tenas an? of the order of 

The effect is usually t o  increase the energy flux. 

. 
As the square of the density fluctuations is supposed t o  be small, these 

will be neglected. Terms 2 and 6 are 

"r - (PE Wr) 2 
'r - (PE wr) - r 

Terms 8 and 10 give 

. 

This is the entropy gradient (except for  the effects of composition 

gradients). 

i n  EQuation (10) creates the turbulence and energy flow. 

usually 6mal.l and is neglected. 

the rate of energy generation between the hot and cold elements. 

It is tk basic driving force that w i t h  the buoyancy effect 

Term 9 is 

Term ll is caused by the difference i n  

As 
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nuclear reactions are strongly temperature dependent, it may be signifi-  

cant i n  sane cases. 

the energy gained is greater than tha t  loss by the mixing of hot and cool 

elements. Its value is  

Belar a certain d u e  of the speed of convection, 

Term 12 is dissipation by radiation from hot t o  cool elements. As these 

are separated by a distance of about I, this  is roughly 

i n  density 

between the hot and cold elements. It is also approximately 

. 

The viscous effects (terms 5 and 13) should not have an important direct 

effect on the large eddies responsible for the energy transport. 

rate of turbulent dissipation used i n  Equation (12) w i l l  be used here. 

For the radial flux, EQuation (13) i s  then 

The same 

When Equations (12) and (5) are combined, the derivative for th 

t o t d  "internaI." energy be!comes 
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The effective energy flux i s  thus gotten by replacing the energy w i t h  the 

enthalpy. 

and predict the condition fo r  convective instabi l i ty .  When the terms 

that are usually not important i n i t i a l l y  are eliminated, Equations (12) 

and (14) are 

We now show that the equations developed are consistent w i t h  

, 

. 

If the pressure and entropy gradients have opposite s b n s ,  the solution 

is an oscil lation which w i l l  decay when the dissipation is added (convec- 

t i v e  s tab i l i ty ) .  

checked by the dissipation (instabil i ty).  

ins tab i l i ty  where the entropy increases toward the center. 

If they have the same sign, the solution grows u n t i l  

In a star,  of course, there is 

Tbe difference equations used i n  convective areas are given i n  the 

Appendix. 

111. 

a) 

EXPIL)SIONS OF 45, 52, and 60 % MODELS 

Equation of State and Enera Generation 

The energy and pressure included the effects of radiation, ions, and 

electrons (including electron-positron pairs) . A t  the comparatively low 

densities of these massive stars, the electronic chemical potential 
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remains less than the electron rest  mass. The integrals for the density, 

pressure, and energy may then be expanded in  sums involving the chemical 

potential  and the first and second Hankel functions of the second kind 1 

For temperatures less than 5.9 x lo9 OK, the lowest value of the 

argument needed for the Hankel functions is 1. 

than 5, they are given accurately by their asymptotic expansions. 

1 and 5, the following expressions give them better than one part i n  10 . 
For an argument greater 

Between 
4 

+ 14,122 z + 14.267)/(z2 + 10.947 z + 3.4912)] 9 

2 p ( z )  = exp (-z) (n/2z)ll2 + $ exp [-z (1.0103 z + 7.5624 z 

+ 6.1486)/(z2 + 5.2018 z + 1.3085)] . 
- ~ 

w i t h  an argument of (mc2/kT) (Fowler and Hoyle 1964). The chemical 

potential  is found ( i n  terms of the density and temperature) by the 

i terat ion of the equation for the density, a procedure that required too 

much time t o  be used each instance the potential was needed. The "first 

order" potential (the d u e  when only the first  term of the sum is  kept) 

is easi ly  found. 

order potential w a s  kept i n  tabulated form. 

sufficient accuracy by four-point interpolation i n  the table. 

The difference between the potential and the first 

Its value was given t o  

The nuclear reactions used included oxygen burning (Fowler and Koyle 

1964) and the a-process (Ffnzi and Wolf 1966). 

important. 

neutrino process. 

The l a t t e r  was never 

Neutrino losses included pair annihilation and the photo- 

Tbe latter (which dominates at  temperatures belaw 
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was  calcuLated from i ts  non-relativistic formula (Ievine 1963). 

temperatma above 

interpolation i n  the table given by Chiu (1961). The important source of 

opacity was electron scattering; it is somewhat greater at low densities, 

since the effective electron molecular weight is smaller due t o  the 

presence of pairs. 

5 x lo8 OK), as well as the pair annihilation under 5 x lo8 OK, 

For 

5 x lo8 OK, pair annihilation losses were found by 

b)  I n i t i a l  b d e l s  

The i n i t i a l  models were approximately isentropic w i t h  a central  

temperature of 

t o  predominate over radiation losses). I n  the integration of the i n i t i a l  

model, the quantity (dv/dP)/(h/aP), w a s  held constant, w i t h  the va lws  

of 0.995, 0.980, and 0.995 in  order of mass. The corresponding central  

densities were 8.44 x ID3, 7.90 x lo3, and 7.06 x lo3 gm/cm3. The 

i n i t i a l  composition w m  oxygen throughout the star. 

7 x lo8 OK (sl ightly above where neutrino losses begin 

The boundary of the "unstable area" i o  the temperature-density plane 

nearly runs along a line of constant entropy on the side where it is 

approached by material near the center of the star (see Figure 1).  

central  temperature at  which a s ta r  becomes aynamically unstable is  

therefore rather sensitive t o  its entropy near the center. 

models used, essentially no nuclear energy was released before the point 

of collapse; the result was that the central  entropy w a s  quite low. 

of the s a m  nuass which were more isentropic at  the point of instabi l i ty  

should become unstable a t  a lower teqsra ture .  

258 of the h e l i u m  burned i n  massive stars remains as carbon. 

is burned at a central  temperature of over 

The 

In ths oxygen 

Models 

It ncrri appears that about 

The carbon 

1 x lo9 OK, and the neon 
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formd by the carbon will burn at a rather higher temperature. There may 

also be various types of shell burning during this stage of evolution. 

These effect8 are not included here; however, they may have a significant 

effect on th? structure of the star by the tine it becomes unstable. 

Any l o w  molecular weight envelope should be sufficiently extended so 

that it haa little effect on the material near the center. The masses 

given then properly refer t o  the core mass and not tbe to t a l  mass of the 

star. It may be, however, that the mass of the envelope is  small .  After 

a central  teepipemture of something 

becane the chief' form of energy loss. Providing that some type of shell 

burning occurs at a later point in  the evolution, the star w i l l  aontract 

u n t i l  the nuclear energy release is approximately that of the neutrino 

losses. Since the neutrino losses are concentrated mar the center, and 

radiation losses are comparatively mall, most of the energy relesrred by 

the shell burn- is rete-d in raising the entropy of the material 

beyond the shell. There shouldbe enough energy t o  extend a convection 

zone over most of the exterior mess. Once the convection reachee thc 

enwloge, the m g e n  (or helium) w i l l  be swept down into the Interior 

and converted into hiah molecular weight material. 

7 x 10' OK, neutrino losses 

Fropl %he central  temperature of 7 x lo* OK, the models took roughly 

100 years t o  reach the point of inetability. 

losses increased by more than 8 factor of 10 . 
temperature and density distribution of each star a t  the time it began t o  

collapse. In each case it then  took soppBwhat more than 500 eeconds t o  

reach a t o t a l  kinetic energy of 2 x 10 ergs. In the description of 

each explosion, this wpu) chosen as the zero point of the time. 

Over this period, neutrino 
4 Figure 2 gives the 

48 
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c )  Collapse and m l o s i o n  

Each collapse (after reaching a kinetic energy of 2 x lo** ergs) took 

around 100 seconds: 

148 seconds (for  60 %). 
(reached shortly before the halt of the collapse) rose t o  somewhat more 

than 100 times the rate  of the neutrino losses. 

chief reason why it did not r i s e  higher; the mass fraction of oxygen at the 

center at ths time of reversal of collapse was, in order of mass of the 

star, 0.1310, 0.0142, and 0.0026. 

limited by depletion, the t o t a l  amount of oxygen consumed was not very 

sensitive t o  the reaction rate. With the possible exception of the 45 % 
model, it was estimated that a change i n  the reaction rate  by a factor of 

100 would  not have altered thh amount of oxygen burned by more than a 

factor of 2. 

before the reversal of collapse. 

(45 %), 
about 1.0 x los1 ergs per %.) Figures 3, 4, end 5 give the ra te  of 

energy relame, rn well as neutrino losses, as a function of t lme .  Thsy 

also give the t o t a l  energy, turbulent energy (produced by convection), 

and kinetic energy. 

76 seconds (for 45 %), 125 seconds (for 52 I@, and 

The peak rate of energy release by oxygen burning 

Oxygen depletion was the 

Because the energy release w a s  largely 

In each case more than 80% of the energy release occurred 

The t o t a l  oxygen consumed was 3.3 % 
7.5 % (52 %), and 15 % (60 %). (The energy release is  

Each zgodcsl first becrme convectively unstable at a mss fraction, Xr, 

of about 0.08. 

after the reversal of collapse). 

t o  Xr = 0.12. 

at the reversal of collapse it had spread t o  

extent, it reached Xr = 0.56. As the entropy gradient i n  the outer part 

For the 45 % model, th is  occurred at 82 seconds (6 seconds 

The convective zone eventually extended 

In the 52 % case, convection started at 116 seconds, and 

Xr = 0.28. At i ts  maximum 
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of the star was small, a slightly larger release of energy wou ld  probably 

have extended the convection t o  the surface. I n  the 60 % model, convec- 

t ion started at 137 seconds, reaching 

at 156 seconds, and the surface by 162 seconds. 

not very meaningfbl. 

the star, and the m n t  of the convection zone moved considerably faster 

than the speed of the turbulence; this would  not seem t o  be p b s i c a l l y  

possible. 

are not very satisfactory i n  describing the advance of a quickly moving 

convection front. With the equations used, the convection crossed a mass 

zone i n  the t i m e  it took the zone t o  absorb e n q h  energy t o  raise its 

entropy above that of the next zone; this occurs rapidly for nearly isen- 

tropic material. 

Xr = 0.56 at 148 seconds, Xr = 0.82 

The last two figures are 

Thare was no energy generation i n  the outer part of 

The convective equations represent a type of diffusion, and so 

The large entropy gradient near the center produced by the high 

temperature dependence of the neutrino losses was apparently the cause of 

the convection s tar t ing away from the center. 

more than offset  by the even higher temperature dependence of the nuclear 

reaction rate; however, i n  th i s  case, the collapse quickly pushed the 

material t o  high temperatures where the temperature dependence of the 

oxygen burning is  lower. 

ths different ia l  of the energy release throughout the star, caused the 

convection t o  start aww from the center where the entropy gradient was 

lower . 

Ordinarily this w o u l d  be 

This and oxygen depletion, which also reduced 

The convection probably did not have much effect  on the explosions. 

The maxianrm turbulent energy density was Less than l$ of the internal 

energy density. (The largest speed of turbulence was about lo00 km/sec.) 
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The evolution w a s  too fast by about a factor of 10 t o  produce much mixing. 

The convective mixing increased the total. amount of m t e r i a l  burned by only 

a few per cent. (nK effect may have been more important i f  the convection 

had s tar ted at ths center.) The "implicit" equations used fo r  the calcula- 

t ion  of the convection (see Appendix) will, if  anything, overestimate the 

rate of growth of the convection. 

R a k s v y ,  and Sack (1967) estimated the effects of convection by first assuming 

no mixing and then complete mixing. 

oxygen waa burned. 

7 x ergs to  the surface. 

In a calculation on a 40 % star, Barkat, 

In the l a t t e r  case, twice as much 

In the 60 % star, the convection carried about 

In each case, as the collapse reversed, and the star began to  expend, 

no shock wave was observed t o  develop, except possibly i n  the  outer few 

per cent of the mass. 

t o  that necessary to  develop a shock i n  the interior,  

as estimrrted by On0 and Sakashita (1962), is 3 x 

(mass and radius i n  terms of those of the sun). 

the actual rate,  

The ra te  of energy release was quite low c q a r e d  

The power t o  do this, 

x ( w R ) 2 * 5  ergs/sec 

This is  about lo00 times 

After the collapse was halted, the basic feature was the increase in  

kinetic energy. 

remained negative; t h i e  meant that the whole star w o u l d  not be disrupted, 

but it did not prevent some ofthe material Prom being ejected. 

145 seconds, the kinetic energy reached its maxirrmm of 1.81 x 10 ergs, 

the surface velocity being 

c i t y  reached a maxirmlm of 4652 km/sec 

maximum contraction). 

began t o  collapse again (the central density then being 

The 45 % model was the only one in  which the t o t a l  energy 

A t  

51 

4337 km/sec. A t  189 seconds, the surface velo- 

(about 1/3 the escape velocity at 

A t  940 seconds, about the inner 90% of the star 

300 gm/cm5). 
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This produced an o s c i U t i o n  w i t h  a period of 1300-1400 seconds; slightly 

more than two periods were followed. 

central  density increased by a factor of 30, and then expanded by a factor 

of 10. 

and 3. 

The chief cause of the dempbg was probably the interaction w i t h  the 

ejected materid, the oscillation produc- shock waves which reinforced 

the motion of the outer part o f t h c  star. The evolution w a s  follawed t o  

about 4000 seconds. 

the front of the ejected material of around 3400 km/sec. 

were ejected (i.e., had a velocity greater than the velocity of escape). 

During the first oscillation, the 

During the second oscillation, the corresponding factors were 5 

A t  least i n i t i w  the oscillation was being rapidly damped out. 

Conditions a t  t h i s  time indicated 8 f i n a l  velocity a t  

From 1 t o  2 % 

The kinetic energy of the 52 % model reached a maximum of 

4.88 x 1051 ergs at 191 seconds, w i t h  a surface velocity of 6400 km/sec. 

The latter reached its maximum of 6774 seconds at 310 seconds. Af'ter th i s  

the velocity decreased only slightly. 

1257 seconds, where it w a s  

energy f r o m  the kinetic energy, the final velocity was estimated t o  be at 

least The point i n  the star at  which the velocity equalled 

the velocity of escape indicated at least 20 % would be ejected. 

the t o t a l  energy of the star was positive, it may be that essentially a l l  

the mass w o u l d  be found t o  be ejected if  the evolution were followed long 

The evolution w a s  followed t o  

6622 km/sec. By subtracting the gravitational 

6500 km/sec. 

Since 

enough. 

The kinetic energy of the 60 % model reached i ts  maxiwM of 

1.09 x ergs a t  224 seconds; the surface velocity was 8741 km/sec. 

This reauhed 8948 km/sec at 345 seconds. The evolution w a s  followed t o  

390 seconds. By the saimh methods as before, the f i n d  velocity was found 

t o  be greater tban 8500 km/sec, and at least 40 % were ejected. 
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MSSS 

4s 

52 

60 

Mass 
Ejected 

1-2 

20-52 

40-60 

3.3 I 3,400 

7 a 3  

we I 8,500 

The velocities given in Table 1 (the averaged velocity of about ths 

outer le of the mass) would be modified sommhat if an envelope had been 

added to  the calculations. 

type 11 supernovae (so00 - 10ooo W s e c ) ;  howeverD there is  s t i l l  a ques- 

tion of how and where in the star the observed (Doppler-shifted) light 

originates. The masses of the supernovae do not seem t o  be well-known. 

Estimates of front 1 to  10 % have been given. 

was mBde by Shklovskii (1960), 

Thy are comparable to  those observed in 

One estimate of 60 % 
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APPENDIX. DIFFEEWCE EQUA!I’IONS 

The equations of momentum and energy consemtion under spherical 

symmetry are: 

and 

2 bP GM - -  au 
3i R2 = - 4xR 

. 
The independent variables are the t h e  t, and M, the t o t a l  interior mass. 

F is the t o t a l  energy flux across a spherical surface, E is the specific 

rate of energy generation, and U is  the radial velocity. 

a) Finite Difference Approximations 

I n  the numerical calculation of the evolution, the star is divided 

into N ma68 zones. The boundaries of the zones are denoted by integers, 

and the midpoints by half-integers. The specific volume, temperature, 

composition, and quantities depending on them, auch as the pressure and 

opacity, are defined at the midpoints. The velocity, radius, and energy 

flux are defined at the boundaries. The size of the tlms step is 
1 M1 (= tW1 - t”). The mass of the zone centered at I - 5 is &(I - 5); 

the maas interior t o  I is ~(1).  he average d u e  of a quantity over the 

tims step is denoted by enclosing it i n  Equations (17) and (18) are 

then approxbmted by 

( ). 

and 
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where &(I) = 0.5 [&(I - $) + &(I + $)] . 
D indicates a t h e  differenoe, and a a radial difference, e,g., 

!Che radius is given by 

R(I)wl = R ( I ) n  + IXC(U(1)) 0 

The specific volume at is defined as the t o t a l  volumre of the zone 

divided by its mass. The ugual method of averaging is t o  take a weighted 

sum of the early time value (at t'l) and of the l a t e  time d u e  (et twl). 

The averaged pressure also include8 the a r t i f i c i a l  viscosity used t o  

handle s b k  waves (Richtngrer 1957). 

I - 5 

Aa the basic interest  was in processes in the interior, conditione 

at the surface were not treated precisely. The surface is defined by 

zero pressure. Equation (19) may be used at the surface by defining 

The way in which the radii are averaged is determined by energy con- 

servation. Th4 t o t a l  energy ie defined as 
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Providing the average velocity has a the-centered definition (i.e ., em 
equal weighting i s  given t o  late and early tine values), and the average 

pressure used In E;quation (19) is the sEMe as that used in EQuation (m), 
the t o t a l  energy is conserved i f  

(R(I)2) = $ [R( R( I)*' + R( I)w1 R( I)" f R( I)" R( I)n] 

and 

Where the average velocity is given by 

the energy is increased too much by 

N 
C (0.5 - a) &(I) D[U(I)I2 . 

1=1 

This suggests that the best value of CY is 0.5 or slightly greater. 

Except for  large the steps where s t ab i l i t y  considerations become 

more important, time-centered equations should usually be more accurate. 

These were found t o  be msrgllnally stable, i.e., perturbations and 

irregularities persisted over a number of time steps w i t h  about the s a m  

magnitude. (The size of the time steps were determined by the rate of 

change of conditions only, and no attempt was made to  keep them below, 

for example, the Courant limit.) When the la te  t h e  weightings were 

increased slightly, e.g., t o  0.51, the equations were stabiliecsd. 

For sufficiently slow evolution, it was found better t o  use the 

hydrostatic" equation. A l l  "averaged" quantities in  the acceleration l f  
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equation (19) were given their la te  time values. The acceleration is then 

equated to  the force at  twl, and as the acceleration is  small, the force 

is effectively put equal t o  zero. 

value of the average pressure i n  the energy equation (20). The energy, as 

given i n  muation (21), is then no longer formally conserved, However, 

where the maximum density changes over a time step were kept sufficiently 

small. (less than 5-lo$), the energy w a s  usually conserved within an 

acceptable accuracy. 

It is preferable t o  have a time-centered 

The equations are solved by linearizing t h e m  and solving the linearized 

forms. 

linearization dfd not a l w ~ s  work, supplementary procedures had t o  be added. 

They consist basically in  limiting the amnunt the variables can change 

during each i teration, 

This process is iterated u n t i l  the equations are satisfied. As the 

With nuclear reactions present, we also need an equation for the 

change of each isotope over the t h e  step. 

due t o  a given reaction is proportional t o  the average energy generation 

of that reaction. It is nscessary t o  define this so that each maas frac- 

t ion  remains between zero and one. This may be done by averaging separately 

its composition dependence and i ts  dependence on temperature and density. 

If a reaction’s dependence on a given mass Fraction is X , then the average 

value at I - 2 is given by 

The change i n  a mass fraction 

V 

. 
At the densities at which investigationti were carried out, virtually 

all neutrinos escape directly f’romthe star. 

treated as a negative rate of energy generation. 

Neutrino losses are then 
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b) Convective Difference Ecluations 

In convective areas, the difference equations axe based on Equations 

(a), (U), (14), and (E), which am given in Section 11. The averaged 

speed of the convective turbulence 
2 energy flux (4nr Lr) are defined at the bowdary of each maas zone as 

W ( 1 )  aLnd L(1). Often the relaxation time for  the convection is much 

less than the characteristic t i m  of evolution of the star. The convection 

is then approximately i n  equilibrium, and as the time step is usually taken 

proportional t o  the evolutionary time scale, the (dynamical) difference 

equations for the convection must reduce t o  the equilibrium case for these 

large tims steps. This is  done by giving all quantities on the right-band 

side of the difference forms of Equations (12) and (14) their  valus8 at 

tW1 

t ions ) . 

(( IWr I ) ) and of the t o t a l  convective 

(as was done for the acceleration equation under hydrostatic condi- 

The pressure-like effect  of the Reynolds stresses is defined at 
1 I - -  as 2 S ( I  - 5) .  This was usually given the averaged value 

- 0.5 [W(101)~ + W(I)23 /V( I  - $) . 
(Unless otherwise indicated, dl quantities not enclosed by ( ) represent 

their v d w s  at twl.) For simplicity, the ra t io  of the e n t w p y  t o  the 

energy was giwm a constant value yl. Then the momentum and energy equa- 

tions become 

and 
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1 
DLE(1 - $)I + [ ( P ( I  - $1) + (S(1  - g))] D[V(I  - $)] + 0.75 D[w(I)2] 

E 

F is now the  non-convective energy flux. 

used a8 the basis of the energy equation (23). While the change i n  the 

turbulent energy is often small, the rate at which it is being produced 

and dissipated m y  be quite large (and nearly cancel). By using Equation 

(E), two large non-linear tenns are replaced by two smaller, more linear 

quantities, which is  t o  be preferred i n  numerical work. 

cates the average radial velocity. 

Equation (15) instead of (5) is 

U ( 1 )  nuw indi- 

Y ( 1 )  is the man of (d€/dE) at I - E I. and I + $ ; the convec- 

tive equations are then 

and 
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d E 2  w h e r e  

The term f(I) 

pressure scale height, the radius, and the length of the convection zone. 

Radiative dissipation was not important for  the conditions under con- 

sideration, 80 this mrs neglected. 

(y2  - 1 )  = - P/(G p ) ani is  held constant at  some mean d u e .  

is defined w i t h i n  a coefficient as the mininnnn of the 

Instability is considered t o  

- 0.5 cP(1 - 5) + P(1 + 

becomes positive. This is tested 

and, optionally, at several times 

exis t  at I when the term 

for at tb beginning of each time step 

during the i terat ion process 88 the 

equations are be- solved. The convection equations are then applied 

until the turbulence has died out, which w i l l  be a MLmber of time steps 

after the boundary has became stable wain. When the sum 

N 
Z 1.5 &(I) W(I)2 

is added t o  the definition of the t o t a l  energy, it is conserved t o  the 

8- extent as before. 

When convective diffwion is added, the rate of change of an iso- 

tope is 
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where XP is  the rate it is  being produced by reactions. 

mated by 

This is approxi- 

- R ( 1 0 1 ) ~  W(1-1) aX(I-l)l} . 
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FIGURE CAPTIONS 

Figure 1: The area i n  which y becomes less than 4/3 due t o  electron- 

positron pair production. 

Figure 2: TIM temperature (10' OK) i n  solid Unes and the density 

(gm/cm3) i n  broken lines of the three models as a Function of 

the mass fraction, Xr, at the point of instabi l i ty  and at the 

reversal of collapse. 

Figure 3: Tber absolute value of the t o t a l  energy (A), the kinetic energy 

(B), the ra te  of nuclear energy release (C), and the neutrino 

losses (x 100) (D)  of the 45 % model as a function of t i m e .  

Figure 4: The quantities of Figure 3, as w e l l  as the turbulent energy 

(E), for  the 52 % model. 

Figure 5: The quantities of Figure 4 for the SO % -del. 

Figure 6: The radius (solid l ines) and velocity distribution (broken 

l ines)  at the t i m e  at which calculations for  each model were 

terminated. 
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